Uses:-
1. Noise Filtering
2. Visualization
3. Feature Extraction
4. Stock Market Predictions
5. Gene Data Analysis
Goals:-
k) - dimensional subspace (where k < d)Main Functions of the PCA items:-
k Eigen vectors that correspond to the k largest Eigen values where k is the number of dimensions of the new feature subspace (k <= d).W from the selected k Eigen vectors.X via W to obtain a k-dimensional feature subspace Yhttps://plot.ly/ipython-notebooks/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/
PCA is attempting to:-
X and Y values| «Previous | Next» |